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A time-derivative preconditioning algorithm that is effective over a
wide range of flow conditions from inviscid to very diffusive flows and
from low speed to supersonic flows has been developed. The algorithm
uses a preconditioning matrix that introduces well-conditioned etgen-
values while simultaneously avoiding nonphysical time reversals for
viscous flows. The resulting algorithm also provides a mechanism for
controlling the inviscid and viscous time step parameters at very
diffusive flows, thereby ensuring rapid convergence for very viscous
flows as well as for inviscid flows. Computational capabilities are
demonstrated through computation of a wide variety of problems.
Convergence rates are shown to be accelerated by as much as two
orders of magnitudes, while providing solutions that are indentical
to those obtained without preconditioning method.  © 1993 academic
Press, Inc.

1. INTRODUCTION

Time-marching algotithms are widely used for the com-
putation of compressible flows. A major advantage of these
techniques is that they apply to both inviscid and viscous
flows and can be used in conjunction with virtually any
spatial discretization in all Reynolds number regimes. In the
past two or three decades, time-marching schemes have
been widely accepted and applied as the method of choice
for transonic, supersonic, and hypersonic flows.

In the low subsonic Mach number regime, time-marching
algorithms do not fare as well. When the magnitude of the
flow velocity becomes small in comparison with the acoustic
speed, the convective terms of the time-dependent equations
become stiff and time-marching methods converge very
slowly. These convergence difficulties are then further
exacerbated by the magnitude of the diffusion terms, and
corrective action can differ substantially when the diffusion
terms are missing (the Euler equations), small (high
Reynolds numbers) or dominant (low Reynolds numbers).
In keeping with the broad applicability of the time-
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marching method, it is our objective to demonstrate pre-
conditioning methods that eliminate low Mach aumber
convergence difficulties in all Reynolds number regimes.

By way of exampies of low Mach number flows, we first
note that, if the velocity in the entire flowficld is low, com-
pressibility can be neglected and the stiffness problem can be
averted by switching to the incompressibie equations. Many
problems, however, contain some regions with very low
Mach numbers while other regions are decidedly com-
pressible so that the compressible equations must be used
throughout. Consequently, one must deal with the stiffness
of the equations. Representative problems that contain both
compressibility effects and low-speed regions can be
grouped into two classes: high-speed flows with embedded
regions of low velocity; and low-speed flows with tem-
perature differences arising from strong heat addition.
Examples of both are described below.

High-speed flows with embedded regions of low velocity
are typified by external, transonic flow with embedded low-
speed regions near stagnation points or by choked internal
flows with a low velocity region upstream of the choked
area. In general, these embedded regions have little effect on
convergence when the low-speed region is small, but they
can dominate convergence when the size of the region is
large. For example, the low-speed region near the stagna-
tion point of an isolated airfoil is seldom large enough to
affect convergence, but the subsonic flow upstream of a
strongly converging nozzle may completely dominate the
CONVErgence process.

Low-speed flows that are compressible because of density
changes induced by heat addition can be represented by
problems with surface heat transfer or volumetric heat
addition. The most common example of volumetric heat
addition occurs in combustion problems, but additional
problems of interest include advanced space propulsion
concepts such as laser, solar, and microwave thermal
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propulsion [1] in which electromagnetic radiation is used
to heat a flowing gas. In problems sich as these, the equa-
tions frequently remain stiff over the entire computational
domain so that efficiency requirements make it imperative
that the stifiness be dealt with directly.

All of these low speed problems can be encountered in
any Reynolds number regime. Several previous researchers
have considered the low Mach number problem for inviscid
flows. The present paper is directed towards viscous flows.

PREVIOUS WORK ON EIGENVALUE CONTROL

The effect of eigenvalue stiffness on the convergence of
both explicit and implicit schemes is well known and two
distinct methods have been suggested for controlling the
eigenvalues to enhance convergence. The first is to
premultiply the time derivative by a suitable matrix that
scales the eigenvalues of the system to the same order of
magnitude. The other is to use a perturbed form of the equa-
tions in which specific terms are dropped such that the
physical acoustic waves are replaced by pseudo-acoustic
modes. We refer to the former as preconditioning and to the
latter as a perturbation procedure. The preconditioning
method has the advantage that it provides a global solution
that is valid at all Mach numbers, whereas the perturbation
method is valid only locally in the regime in which the
perturbation is carried out.

A number of preconditioning studies have been reported
previously, some dealing with preconditioning in a
generalized sense for all flow regimes, while others have
focussed on the low Mach number problem. Of the
generalized methods, Viviand’s [27] was one of the first and
one of the most complete. He developed a generalized
optimum preconditioning procedure for a class of hyper-
bolic systems representing the Euler equations and gave
specific rules for ensuring that the preconditioned equations
remain well posed. The optimum preconditioning matrix is
shown to depend upon a preferred direction in space, but
even though he presents several specific preconditioning
matrices, no general method is available for finding this
preferred direction. Additional details concerning precondi-
tioning are presented by Peyret and Viviand [3], who are
the only ones so far to consider preconditioning in viscous
flows. Turkel [47] also discusses preconditioning with
applications to both compressible and incompressible flows
and Van Leer et @l. [5] have used a preconditioning in
multi-stage schemes for multi-grid computations. Finally,
Storti et al. [6] have presented some recent theoretical
work on eigenvalue control that agrees well with Viviand’s
findings. References [2-6] are primarily theoretical in
nature and do not include detailed systematic studies of the
effectiveness of preconditioning in actual implementations.
The present paper deals with the more restricted issue of
preconditioning in the low Mach number regime {although
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examples are given to show that low Mach number issues
can dominate stiffness ansing from transonic speeds in
many practical problems) and proceeds primarily from an
implementation viewpoint.

Previous studies of preconditioning in low Mach number
inviscid flows have been reported by Briley et al. [7] for
isoenergetic systems and by the present authors and their
co-workers [8-10] for the Euler equations. Low Mach
number convergence enhancement by Briley er al was
limited to Mach numbers above 005 Our results
demonstrated that preconditioning provided Mach number
independent convergence at all Mach numbers between 0.7
and 107% In addition success with “time inclining,” which
is a simplified form of preconditioning, has been reported by
Dannenhoffer and Giles [117.

The second general method for eliminating eigenvaiue
stiffness is to use a perturbed form of the equations of
motion. The present authors [9, 127 have used an expan-
sion of the flow variables in terms of the Mach number
squared to remove the physical acoustic waves and replace
them by a set of pseudo-acoustic waves whose speeds are
comparable to the particle velocity. A similar perturbation
procedure has also been developed by Guerra and
Gustafsson [13] based upon expansion in Mach number,
rather than Mach number squared. This method is
extremely effective for both viscous and inviscid flows and
has been implemented for numerous applications [14-16].
Other perturbation procedures include the one by Rehm
and Baum [177], which is specialized toward combustion
problems and has been applied by several authors including
Chenoweth and Paolucci [18] and McMurtry ez al. [19].
Although these perturbation procedures are highly robust
and are applicable to both viscous and inviscid flows, the
nature of the perturbation limits their usage to low subsonic
flows. Specifically, the methods are not adequate for the
transonic flow regime and cannot be used for flows that go
through the sonic speed. Cur focus here is on the precondi-
tioning methods, but we take advantage of knowledge
gained from perturbation procedures to develop the
preconditioning matrix. One of the goals of the present
research is to recover the robustness exhibited by these
perturbation schemes in preconditioned methods so that
they may be applied through transenic speeds.

To date extension of preconditioning methods to viscous
flows has not been reported. We attempted several numeri-
cal studies for viscous flows using the preconditioning
method of [8, 10] and found that it is not effective in
viscous flows. Accordingly, the purpose of the present paper
is to develop a method which gives reasonable convergence
for all Reynolds number ranges while keeping the same
effectiveness in inviscid flows as in the previous method. For
the preconditioning matrix to be pertinent for viscous flows,
it must not introduce time reversals into the diffusive terms
and must maintain well-conditioned inviscid eigenvalues.
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To ensure this, we express the equations in terms
of a ‘“viscous” sct of primary dependent variables,
Q,=(p.u v, T), which makes it easier to satisfy the
diffusive requirements. With these primary dependent
variables, the equations degenerate to the classical diffusion
equations in the limit of highly diffusive flows and well-con-
ditioned gigenvalues are obtained for the inviscid terms by
properly scaling the time derivatives. For the computation
of very low Reynolds number flows, additional care must be
exercised. Both CFL number and von Neumann number
should be kept of order one to obtain efficient convergence.
The newly developed aigorithm provides a mechanism for
controlling these numbers, thereby ensuring rapid con-
vergence for very viscous flows as well as for inviscid flows,
The resulting algorithm is effective over a wide range of flow
conditions from inviscid to very diffusive flows and from
low speed to supersonic flows and the present paper
demonstrates the computational capabilities for a wide
variety of problems.

As a final note, we address the issue of solution accuracy
at low Mach numbers. Volpe [207 showed solutions whose
accuracy decreased as the Mach number approached zero,
although he gave no explanation for this behaviour.
Numerous checks show this deterioration does not occur in
our calculations. To the contrary, our compressible solu-
tions approach classical incompressible resuits more and
more closely as the Mach number is reduced. In addition,
back-to-back comparisons with results from incompressible
codes likewise show the solutions become identical to more
and more digits as the Mach number is reduced. We do use
roundoff control for the pressure but would not expect this
to be the primary issue.

2. PROBLEM FORMULATION

2.1. Eguations af Motion

The two-dimensional compressible Navier—Stokes equa-
tions using the time-derivative preconditioning procedure
can be written in the vector form

(1)

where I" 1s the preconditioning matrix and will take on
various forms depending on the preconditioning chosen.
Here, we present the equations in Cartesian coordinates,
although all computations have been prepared in
generalized coordinates. When I is the identity matrix, we
recovet the standard (non-preconditioned) equations.
Additional vectors in Eq. (1) are:
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Q= (p, pu, pv, €)"

E={pu, pu* + p, puv, (e + p)u)”
F={pv, puv, pv* + p, (e + p)v)"
H={(0,0, —pg, —pgv)"
Q.=(pu,v, TY.

(2)

In these expressions, the dependent vector ¢ and the
inviscid flux vectors E and F take their standard form, while
H is the source vector, which contains a gravitational body
force. The vector Q, represents the “viscous™ variables that
appear i the diffusion operators. The use of @, instead of
@ in the diffusion terms simplifies their structure, thus
reducing the computational complexity.

All the variables in Eq.(2) are defined by standard
notation including density p, velocity components w
and v, pressure p, temperature 7, and total energy per unit
volume e. The coordinate system is oriented so that the
gravitational body force is in the negative y-direction. The
gravitational term pgy is the work done by the gravity force.
The pressure can be obtained from the equation of state for
a perfect gas.

p=G-D(e=§w4), ()
where y is the ratio of specific heats.

The differential operator for the viscous terms is denoted
by L which is defined as

PR R B

fr Ey MR L

o R gt Ry
3 o 8 8

Tp L2 p 2
o ety N gy

L=

4)

The matrices R, R,,. R,., and R,, are diffusion coeflicient
matrices that include the viscosity u and the thermal
conductivity &:

0 0 0 0 0 0 0 0
ko] @ B0 0 fo0 w0
0 0 u 0 » 0O« 0 0
0 2uw ur k 0 w —3uu O
0 0 0 0 0 0 0
0 0 4 0 0 0 0
R‘ = by =
#=lo —zz 0 o] ®=lo o o
0 -2 un 0 0 un 3w k/(5)

In these expressions, Stoke’s hypothesis is used for the
second coefficient of viscosity (1= — 3p).



210

2.2, Development of Preconditioning Procedure

The preconditioning matrix that was chosen in our ¢arlier
work [8, 10] takes the form:

i 0 0 0
0 i 0 0
re 0 0 i o |,
2 2
“ ;” (M~2=1) u(l=M~2) s(1—M~2) M~

(6)

where M is Mach number. As can be seen by inspection, this
preconditioning leaves the continuity and momentum equa-
ttoms in their traditional form, but modifies the energy equa-
tion such that time derivatives of p, pu, and pv are added.
Both stability analyses and various numerical experiments
show that this preconditioning matrix is effective for a wide
variety of inviscid low Mach number calculations [8, 107].
Classical linear stability analyses of the lull Navier-Stokes
equations in vector form, however, as well as numerical
experiments, show that it is unstable at low Reynolds num-
bers. Detailed analysis [9] indicates that this instability
depends primarily upon the Prandtl number. In the
presence of approximate factorization, the Euler implicit
scheme is highly unstable for Peclet numbers below 500 and
in the absence of approximate factorization, the scheme
retains a weak instability. To demonstrate this, the
magnitudes of the maximum eigenvalues of the amplifica-
tion matrix for the Navier—Stokes equations at a Reynolds
number of 50 and a Mach number of 1077 are presented in
Fig. 1. For the approximately factored equations at a
Prandtl number of 0.7, Fig. 1a shows amplification factors
are substantially greater than unity at high wave numbers in
x and moderate wave numbers in y and at high wave num-
bers in y and moderate wave numbers in x. In the absence
of approximate factorization, the system demonstrates
instability at low wave numbers, Fig. 1b, when the Prandtl
number of 0.07. This strong dependence of the stability
characteristics on the Prandtl number suggests that the
modified energy equation may no longer be well posed in
the diffusion limit.

A possible insight into the difficulties may be gained by
looking at the temperature form of the energy equation.
With minor manipulation, we obtain the following tem-
perature form of the energy for the preconditioned system
{1) with Eq. {6):

C 5T+u6_T+vfﬁ_T)
Plolar " Max T oy
(y—1/M*)dp dp ﬁ_p]
_[ (y—1) o1 uﬁx+u5‘y

=V.(kVT)+ &, (7)
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FIG. 1. {a) Stability results for the preconditioning algorithm using
Eq.(6) with approximate factorization, M =105 Re=50, Pr=07,
CFL =35, 0,=309, g, =442 (b) Stability results for the preconditioning
algorithm using Eq.(6) without approximate factorization, M = 1077%,
Re=350,Pr=007, CFL=5,0,=309,0,=442.

where @ is the dissipation function defined by
du\? dv\?
P=pl2|— 2 —
2(3) ~(5)
v duN\? 2féu dw\*®
=+ =t —+=1 | 8
* (ax * ay) 3 (ax +5) J ®

Here every term in Eq. (7), except the time derivative of
pressure, retains its traditional form. We can see that a
decrease in the Mach number changes the sign of the time
derivative of the pressure. This change of sign may not be
appropriate for the conduction term and is a probable cause
of the instability.
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To circomvent this difficulty, a new preconditioning
matrix that is effective both in inviscid and viscous calcula-
tions is developed in the present paper. The basic idea of the
new time-derivative preconditioning procedure is to start
with the time derivatives expressed in terms of the “viscous”
dependent variables (Q,) that appear in the diffusion terms.
This set of variables is inspired by artificial compressibility
methods for incompressible flow [4, 8] as well as low Mach
number formulations using perturbation expansions for
compressible flow [9, 12] and makes it easier to ensure that
there 1s no time reversal in the viscous terms. In particular,
the low Mach number formulation with this set of variables
provides unconditionally stable results for both inviscid and
viscous calculations. We also note that “viscous™ dependent
variables {Q,) are very similar to the (p, u, v, §} variables
used by Turkel [4], except entropy is replaced by tem-
perature.

To simplify the algebra, first we transform the conser-
vative form of Eq. (1) to the non-conservative form. We
define the non-conservative vector as

O={p,uvp), (9)

where the tilde represents the non-conservative varizible. We
then premultiply Eq. (1) by the Jacobian P! = 30/0Q to
obtain

(10)

Qe (2,2
ar

%Q = 5y):P1(H+ L(0.).

Here the preconditioning matrix is dropped for the time
being.

One convenient method for obtaining a new precondi-
tioning matrix, as well as for transforming the (p, u, v, p)
system to the {p, w, v, T) systemn, is as follows. First we sub-
tract the continuity equation from the energy equation. This
introduces the temperature form of the time derivative into
the energy equation (dp/d¢ in the continuity equation is
replaced by 87/8: by means of the perfect gas faw.) This
temperature form of the time derivative appears well-suited
to the heat diffusion term.

The vector form of this step is obtained by premultiplying
Eq. {10) by a sparse matrix K,

2, F
0, ¢ p- (ag+a

1
K5 5 ()

) K, P~ (H+L(Q,)),

where

K, =Diag(1, p, p, 1), with nonzero element (4, 1)= —yRT.
(12)
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We then convert the dependent vector § to 0, by using the
chain rule,

20, _,[0E &F
K K, =+ K, P ( ay)
=K, P~ (H+L(Q.)), (13)

where X, is defined as the Jacobian, X, = 83/6(,. Now we
precondition Eq. {13) by premultiplying the time derivative
term by £, K7 'K ;' to obtain

o0, oF BF)
o (a 5

=K, P~ '(H+L(Q,))

(14)

where the preconditioning matrix I, is defined as

1
r.= 0 p 0 0 (15)
0 0 p 0
(I-=y)d 0 0 ypR

and where M 2 is 4 scaling parameter {M is Mach number)
and 4 is an arbitrary constant, the proper choice of which is
discussed later. This preconditioning matrix [, introduces
the artificial compressibility form of the continuity equation
and modifies the energy equation to its classical tem-
perature form, while keeping the momentum equations in
their standard form.

These preconditioned equations are nearly identical to
the perturbation equations used extensively [9, 12, 14-16].
The individual equations are

1 dp dlpu)  o(pv)
BM? ot ax ay

(6—1£+u%£+va—u +6‘_p_
P\ & éx  dy ax F

=0

(V.T.)

ov v dvy op
(5+ PR )+g—~p(V.T.) (16)
¢ 8T & ap ap ap
zz s X,
”C(a: a+a:) T PR
+V. - (kVT)+ &

The term V.T. represents the appropriate viscous term as
given in Eq. (5) and & is the dissipation function given
above. We note that in the energy equation, é appears as a
coefficient of the time derivative of pressure. From inspection
of the equation, two convenient choices of 3 may be O or 1.
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When 6 =0, the time derivative of pressure drops out, and
when 6 =1, a standard energy equation can be retained.
With either choice of 4, the momentum and the energy
equations now appear to be well-suited for viscous effects,
since they are all of the form

S HV-V=a Vi,

op

17

. (17)

where ¢ represents u, v, and 7, respectively, and « is the
appropriate diffusivity.

The corresponding  time-derivative preconditioned

system for_the conservative form of the equations is readily

found by premultiplying Eq. (14) by PK ! 1o obtain

&g, GE OF
=24 -4 —= .
3 + P + R H+L(Q,) (18)
Here, I, defined as I'=PK['T,. is
: 0 0 0
pM*
u
FYVE P ¢ 0
r-f (19)
B—AP 0 I 0
(e+p) yoR
mBMz—(3 ey

The eigenvalues of the preconditioned system of Eqs. (18)
are

A(I:_IAU)=(L¢, " u(l +ﬁM2w/}:RT)iC’>, (20)

2

where A,=0FE/0Q, and w=y—(y—1)o. The pseudo-
acoustic speed ¢’ is defined as

BM 2ar\? 1w’ )
2 2 2 —
cF=u <l+ “RT +48M7 (1 “RT)

(21)

In the present study, &=1 (thus, w=1) is used and this
vailue with a proper choice of ff gives identicai eigenvalues to
those obtained from the preconditioning matrix of Eq. (6}.
Representative computations with 8 =0 give convergence
rates that are almost identical to those with § = 1.

In order to obtain well-conditioned eigenvalues for the
inviscid case, we choose the scaling parameter §=kyRT,
where k is a parameter to be determined later. For values of
& of order unity, this choice of § allows the pseudo-acoustic
wave speed ¢’ to be the same order as the particle velocity
u and ensures that three eigenvalues are always positive,
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while one is negative for subsonic flow. As Mach number
approaches unity, the eigenvalues return to the physically
proper values (u, 4, u+¢, 4 —c).

The solutions given herein are obtained from the form of
equations given in Eq. (18) with the preconditioning matrix,
Eq.(19). For completeness we transform the matrix in
Eqg. (19) to a form that 1s analogous to Eq. (6) so that direct
comparison can be made. This is accomplished by multi-
plying Eq. (19} by the Jacobian @, /0Q. The result is

r‘

(=02 1) ]
e pa:
(7= D0 +v?) (Lo
| ]
U[Mﬁfi)—l] Lone
TR pm?
GoDW2) 910y 2 1m0+ 1)
5 p
(t—y)v o1
BM> BM?
(=pw (=D
e pM?
(L—ne? =1
1+ Iz pM?
ol =y)(0+1) y—1+y
(22)

where 0=(e+ p)/pfM?’— 6. Comparison of the new
“viscous” precondittoning matrix (Eq.22) and the
“inviscid” preconditioning matrix (Eq. (6)) shows that the
two matrices are completely different. The “inviscid” pre-
conditioning matrix is much simpler than the “viscous” one,
and this complexity is avoided by using the “viscous”
dependent variables ((2,). As mentioned before, in the non-
conservative form, the “viscous” preconditioning matrix
essentially modifies the continuity equation, while the
“inviscid” preconditioning matrix modifies the energy
equation. In the transformation to conservative form, the
modified continuity equation is combined with the momen-
tum and the energy equations. {t is this step that brings
about complexity in the “viscous” preconditioning matrix,
Eq. (22).

One difficulty associated with the above preconditioning
system is that the 1/M* term in the preconditioning matrix
becomes singular in regions where Mach number
approaches zero (e.g., stagnation points). To circumvent
this difficulty, we modify the M? term in the pre-
conditioning matrix by replacing M * by M? (where, M, is
a reference Mach number}. The value of A, is controiled
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according to flow conditions. For subsonic flow where
M<e we use M,=¢, while for supersonic flow where
preconditioning is not necessary, we fix M, as unity to retain
the standard eigenvalues. In between the Mach number
range, M, = M i3 used. The above eigenvalue control can be
writien as

€2, i M<e
M2={M? il s<M<l (23)
1, it M=>1.

This eigenvalue control is continuous in terms of Mach
number and makes the preconditioned system of equations
well-behaved in both subsonic and supersonic flow, thus
ensuring enhancement of convergence rates. In the present
study, ¢ is typically taken as 107" in the vicinity of
stagnation points,

2.3. Convergence Control at Low Reynolds Numbers

Linear stability analyses of Eq, {18) show that the new
preconditioning matrix (Eq. (19)) provides appropriate
stability for all Reynolds and Peclet numbers. This new pre-
conditioning matrix appears to be at least as good as the
original preconditioning for inviscid flow as shown in Iig. 2.
Both the previous preconditioning, Eq. {6), and the present
one, Eq.(19), have identical stability characteristics. The
present preconditioning matrix is, however, a dramatic
improvement over the ariginal one {or viscous {lows (com-
parc Fig. 3 and Fig. ). At low Reynolds numbers (below
Re = 50), however, stability characteristics show that
amplification factors approach unity, suggesting slow con-
vergence rates {sec Fig 4a). The reason for this behavior
can be understood by considering the viscous time step
parameter (hereinafter referred to as the von Neumann
number) o= u At/p Ax?, which becomes important at low
Reynolds numbers. Control of the CFL number alone at
low Reynolds number makes the von Neumann number so
large that the approximate factorization error in the dif-
fusive terms slows convergence. For efficient convergence,
we should control both the CFL number and the von
Neumann number simultaneously.

The simultaneous control of the CFL number and the
von Neumann number is obtained by choosing the scaling
parameter k in the definition of f. The parameter k 1s chosen
as unity (B =7RT) to obiain well-conditioned eigenvalues
for the inviscid terms. In low Reynolds number flow,
however, we use this parameter to specify both CFL and
von Neumann numbers. In the inviscid {imit, we choose the
time step by an appropriate CFL number,

(u(l+ kM) + ) At

FL
C 24x

(24)
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FIG. 2. {a) Stability resutts for the preconditioning algorithm using
Eq.{6) with approximate factorization (inviscid flow), M =107,
CFL =5. (b) Stability results for the preconditioning algorithm using
Eq.(19) with approximate factorization (inviscid flow), M=10"5,

CFL =5
(8
0.4 0.9

0.6
0.7 6.6
BNV
0
FIG. 3. Stability results for the preconditioning algorithm using

Eq. {19} with approximate factorization, M =10"5 Re=350, Pr=0.7,
CFL=5,0,=309 0,=442
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F1G. 4. (a) Stability results for the preconditioning algorithm using
Eq.(19) with approximate factorization, M=10"5 Re=1, Pr=0.7,
CFL=5,0,=1545, 0, =220.73. (b) Stability results for the precondition-
ing algorithm using Eq.(19) with approximate factorization, M =103,
Re=1,Pr=07 CFL=56,=30,06,=41, k=6840.

T

while in the viscous limit, the appropriate viscous time step
parameter is the von Neumann number. By solving Eq. (24}
and the above von Neumann number definition for k, we
find

x{x— 1)

k= ,
MYo—1+yRT/)

(25)

where « is CFL/o Re . and Re,,, is the cell Reynolds num-
ber { = pu Ax/yt). Now, by setting the CFL number and the
von Neumann number to order unity and computing other
variables from given conditions, we can obtain the scaling
factor k. In general, for a wide range of Reynolds number,
the parameter k can be expressed by

k =Max [1, {26)

aloe—1)
MHa—1 +}1RT/u2)]'
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Figure 4b shows the stability characteristics for the Re = |
case when the preconditioning of Eq. (19) is used along with
the value of &k given by Eq. (26). Comparison with Fig. 4a
shows the improvement obtained. In the present paper,
calculations for low Reynolds number flow employ a
spatiaily varying £ so that a constant von Neumann number
can be maintained over the flow domain.

2.4. Roundoff Error Control

Another difficulty with low Mach number computations
is the increase in machine roundoff errors with decreasing
Mach number. It was shown [9] that roundoff error begins
to dominate below M = 10~ and it increases proportional
to M2 The cause of this roundoff error arises from the
calculation of pressure gradients. This problem can be easily
circumvented by employing a gauge pressure,

p=p+p, (27)
where p is an arbitrary constant. We then redefine Q,, F,
and F as follows;

Q,=(p,urT)’

E={pu, pi* + p', puv, {e + plu)’ (28)

F=(pv, puv, pv* + p’, (e + p)v)7.
The perfect gas relation, Eq. (3) remains unchanged.

3. NUMERICAL SOLUTION PROCEDURE

Appropriate preconditioning enhances convergence of
either explicit or implicit algorithms [107]. Here, the
numerical solution of Eq. (18) with Eq. (28) is obtained by
using an Euler implicit discretization in time along with
central differencing in space. For the efficient solution of the
resulting matrix, we use an approximate factorization such
as the Douglas-Gunn procedure [21, 22]. This leads to

a4 0 17
s~ (L _Zp 2
{I +ALS (a.x éx R ﬁx)]

éB & &
I+4t8 ' ——-—R,.— 40,
x[ * (5y dy 5y)] Q

= —4dt S7IR, (29)

where R is the residual of the steady state version of
Eq. {18),

3E OF
R=-—+>——L(Q,)—H.

ax " ay (30)
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Here 4, B, and D are Jacobians of the vectors E, F, and H
and the matrix S=7—4¢D. The solution of Eq. (29)
requires a standard block tridiagonal matrix inversion
procedure. This formulation differs from the traditional
approximately factored algorithm only in the calculation of
the preconditioning matrix, and hence additional computa-
tional cost is negligible. In some calculations, a fourth-order
artificial dissipation is added in an explicit manner.

An important aspect of the preconditioning scheme given
here is that its effects are present only on the left-hand side
of the discretized equations (Eq. (29)) when they are written
in delta form. Consequently, the preconditioning has no
effect on the steady solution. Comparison of solutions
converged to machine accuracy using preconditioning and
those obtained without preconditioning verify this. The
residuals of the preconditioned equation identically satisfy
the nonpreconditioned operator (to machine precision) and
conversely. Note that these comments are made for the case
of central difference operators only. It is possible that pre-
conditioning does impact the steady solution when flux dif-
ference split operators that depend on the preconditioning
matrix are used. The roundoff errors in pressure noted
earlier are because of the low Mach numbers, not because of
preconditioning,

4. BOUNDARY CONDITIONS

The proper cheice of boundary conditions is extremely
important to any numerical algorithm. In the present study,
the method of characieristics-based boundary conditions
[127 are used at inflow and outflow boundaries. It is
imperative to incorporate the preconditioning matrix in this
procedure to reflect the character of pseudo-acoustic waves
near the boundaries. To apply the method of characteristics
procedure, we first premuitiply Eq. (29) by the modal
matrix A ~', containing the left eigenvector of the Jacobian
I'~'4 (or I ~'B) at a constant x (or y) boundary. We then
multiply the result by a selection matrix L that selects those
characteristic equations that represent cutgoing informa-
tion at the boundaries. The approximate set of equations in
the method of characteristics procedure can be written in
the form

Ly 1 aes 2

Ox
B 8 @
-{ZE_Z R, — {4
"[”‘”S (ay 5y ”ayﬂ g,
=-At LM 7SR (31}

Note that this method of characteristics procedure is based
upon the artificial characteristics of the preconditioned
system, because the physical characteristics have been
removed.
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In Eq. (31), the selection matrix L has different forms,
depending on the boundaries of interest. For inflow
boundaries, where the flow is subsonic, L becomes
L =Diag(0, 0,0, 1), where the non-zero entry selects the
outgoing characteristic equation (¥ —c¢'}, while the zero
entries require that physically meaningful boundary condi-
tions be specified. For the present study, stagnation
pressure, stagnation temperature, and flow angle {v/u} are
fixed. The outflow boundary conditions are also obtained in
a similar way. When flow is subsonic, a selection matrix is
L =Diag(1,1,1,0}) and a constant static pressure is
imposed. For supersonic flow, the selection matrix L
becomes the identity matrix and no boundary condition is
needed.

The boundary conditions imposed on the solid surface
are the no-slip condition and a condition on the normal
pressure gradient obtained from the normal momentum
equation. In addition, ¢ither a specified wall temperature or
an adiabatic wall condition is specified, depending on the
problem. The axis of symmetry is treated as a regular ficid
point using symmetry conditions in lieu of boundary condi-
tions. In all calculations, the above boundary conditions are
treated implicitly.

5. RESULTS

Representative results are given for various problems
including flow past an isolated airfoil, flow past a circular
cylinder, flow through a strongly converging nozzle, and
flow in a driven cavity and in a thermally driven cavity.
Several additional problems have also been successfully
computed with the method but are not presented for
reasons of space. In all cases it was demonstrated that the
preconditioning changed only the rate of convergence, not
the final results. Consequently, we focus on comparing the
convergence rates of the various problems with and without
preconditioning, although we also include comparisons
with previous computations to verify the accuracy of our
solutions. The savings realized with preconditioning range
from a factor of two to several orders of magnitude.

5.1. Flow Past an Isolated Airfoil

The first test problem considers inviscid and viscous fiow
past a NACAQD12 airfoil at zero angle of attack. A C-type
grid {56 x 31) is used and the outer boundary is located five
chord lengths away from the wall. Since the flowfield is sym-
metric, only the half domain is considered. At the wall, a slip
boundary condition is used for inviscid flows, while no-slip,
constant wall temperature, and zero normal pressure
gradient are specified for viscous flows. At the outer
boundary for both inviscid and viscous cases, the stagnation
pressure, stagnation temperature, and inflow angle are
specified for the inflow region, while constant pressure is
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FIG. 5. Convergence rates using preconditioning methaod for flow past
a NACA001?2 airfoil for inviscid and viscous cases, M =10"" For Re=1,
100, 1000 (CFL =6, o =3, variable k), for Re = 10,000 (CFL =3, k=1),
for inviscid case {CFL =6,k =1).

specified at the downstream end. The remaining conditions
come from the method of characteristics. The outer free
stream Mach number is 10 ™%, and the viscosity is changed
to vary the Reynolds number. This problem could, of
course, be computed with the incompressible equations, but
the compressible equations are used to demonstrate the
capabilities of the preconditioning scheme.

Figure 5 shows the convergence characteristics using the
preconditioning method for a wide range of llow conditions
from inviscid flow {Re = o0} ta very viscous flow (Re=1).
For all cases, a stretched grid, chosen to provide boundary
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layer resolution at Re = 10,000 was used. Consequently, the
demonstrated convergence rates are the result of changes in
Reynolds number, not grid size. The convergence of the
inviscid case indicates a rate of convergence of one order of
magnitude per 200 iterations. Convergence of the standard
algorithm, without preconditioning, was extremely slow,
requiring some 100,000 iterations for one order of con-
vergence. Thus preconditioning accelerated convergence in
this case by two or three orders of magnitude. For viscous
cases of Reynolds numbers of 1, 100, and 1000, it can be
secen that the convergence rate is faster by a factor of
two than that of the inviscid case. This convergence
enhancement at viscous conditions may be because physical
diffusion serves to dissipate the errors in the solution more
rapidly. At Re=10,000, however, a slight slowdown in
convergence can be noted because the optimum CFL was
somewhat {ower than for the inviscid and the low Reynolds
number cases. In all cases, however, it is clear that the pre-
conditioning procedure enables convergence at these very
incompressible flow speeds with efficiencies that are equal to
those normally observed in subsonic flows.

The corresponding converged velocity resulis for the
three viscous cases are shown in Fig, 6. The top figures show
the full domain solutions, while the bottom figures show the
magnified results around the airfoil. At Reynolds number 1,
the flow is nearly symmetric around the airfoil, approaching
Stokes flow. As Reynolds number increases, the boundary
layer gets thinner and at Reynolds number of 10,000,
separation is observed at 80% chord. No separation is
observed in the other two cases. The solution accuracy was
verified by comparing pressure coefficient with incom-
pressible panel method results for the inviscid case. As
validations for solutions of several other cases are given
below, this comparison is not presented for reasons of space.

Re = 100 Re =

1.0

10000

FIG. 6. Velocity (u/u,) contour plots for viscous flow past a NACAQ012 airfoil for Reynolds numbers of 1, 100, and [0,000.
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FIG. 7. Convergence rates with and without preconditioning method
for flow past a circular cylinder for Re=1, 20, and 40, M= 10"°, For
Re=1, 20, 40 with preconditioning (CFL=6, ¢ =13, variable k), for
Re =40 without preconditioning (CFL = 6).

5.2. Flow Past a Circular Cylinder

The second problem considers viscous flow past a circular
cylinder. For this problem, it is known that the flow is
steady below Re=40 and above that value, becomes
unsteady with vortex shedding travelling downstream. An
O-type grid (98 x 60} is used and a full {360°) computa-
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tional domain is employed. The outer boundary is located
20 diameters away from the cylinder and the outer free
stream Mach number is about 10~°, The boundary condi-
tions used for the present calculations are identical to those
used in the computation of flow past an airfoil.

Convergence characteristics for this problem are shown
in Fig. 7 for Reynolds numbers of 40, 20, and 1. At a
Reynolds number of 20, the preconditioned system reqguires
about 50 iterations to reduce the L, norm of AQ/Q by one
order of magnitude. Similar convergence rates can be noted
for the other Reynolds number cases and convergence is
essentially independent of Reynolds number for these three
cases. The convergence of the standard algorithm (without
preconditioning) is again very slow, requiring about 5000
iterations for one order of convergence.

Computational results for velocity are shown in the top
half of Fig. 8. In the velocity contours at a Reynolds number
of 1, the flow tends to divide and reunite smoothly,
approaching a symmetric pattern fore and aft. At Reynolds
numbers of 20 and 40, the flow separates on the downstream
side, and steady standing eddics are formed. These eddies
are stable and remain attached to the cylinder. Corre-
sponding pressure contours are shown in the bottom haif
of Fig. 8. In order to verify the accuracy of the numerical
solutions, the pressure ceefficient on the wall and the wali
vorticity distribution are compared with experimental
results by Grove ¢ al. [23] and numericai solutions by
Fornberg [24] in Fig. 9 and Fig. 10, respectively. In both
cases, good agreement can be observed.

= 20

FIG. 8. Velocity (u/u,) and pressure coeflicient (C,) contour plots for viscous flow past a circular cylinder for Reynolds numbers of 1, 20, and 40.
C, is defined as C, = (p — py+ 0.5pu2}/(0.5pu}), where p, is front stagnation pressure.

S81/105/2-3
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FIG. 9. Comparison of wall pressure coefficient with experimental
results by Grove et al. [23].

5.3. Flow through a Strongly Converging No:zzle

The third test problem concerns the flow through a
strongly converging—diverging nozzle. This test problem
typifies a high-speed flow with an embedded region of low
velocity in which compressibility effects are significant due
to the presence of transonic speed flow. Two nozzle
geometries are considered for contraction area ratios (AR)
of 10 and 200. These nozzle geometries are of interest to us
for applications in solar propulsion [1], which requires
strongly converging nozzles because of the dilute nature of
solar radiation.

Calculations for viscous, choked flow in nozzles with
AR =10 and AR =200 are made. The converged Mach

6 _

—: present study
5

O: numerical solution
. by Fornberg (1980}

Re = 40

VORTICITY

0y B
-1 . | 1 |
0 50 100 1580 200
ANGLE

FIG. 10. Comparison of wall vorticity distribution with numerical
solutions by Fornberg [24].
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FIG. 11. Mach number comour plot in a strongly converging—
diverging nozzle (AR = 10).

number plots and the nozzle geometries are shown in
Figs. 11 and 12, A 71 x 31 grid for AR =10 and a 100x 50
grid for AR =200 are used with clustering at the wall. In
both cases, calculations go through the transonic region and
stop in the supersonic region, where supersonic outflow
boundary conditions can be specified. The Reynolds num-
ber based on the throat diameter is 6 x 10° for AR = 10 and
9 x 10° for AR =200, respectively. Because of the strong
nozzle convergence, the Mach numbers in the upstream sec-
tions are about 0.05 (for AR = 10) and 0.002 (for AR = 200),
respectively {see Figs. 11 and 12). In Fig 13, the con-
vergence rate with and without preconditioning is com-
pared. Without preconditioning, it takes 450 steps for
AR = 10 and 2100 steps for AR =200 to reduce one order of
magnitude in AQ/Q, while with preconditioning it takes 50
steps for AR =10 and 100 steps for AR =200, Thus, the
preconditioning method enhances convergence rates by a
factor of nine for AR = 10 and 20 for AR = 200, respectively.

In view of the convergence speedups noted in Fig. 13, it is

FIG. 12. Mach number contour plot in a strongly converging-
diverging nozzle (AR = 200).
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FIG. 13. Convergence rates with and without preconditioning method
for viscous flow in a strongly converging-diverging nozzle (AR = 10 and
200). For all cases, CFL=7,k=1.

important to note that although we have removed the eigen-
value stiffness in the low Mach number region, the equa-
tions also become stiff in the transonic flow region where the
Mach number goes through unity. This stiffness, however,
does not appear to be a problem (as Fig. 13 shows). To
investigate this further, we present in Fig. 14 convergence
characteristics without preconditioning for the AR=10
nozzle for several unchoked Mach numbers. The calcula-
tions are made for inviscid flow and the nozzle geometry
shown in Fig. 11. Throughout the calculations, a 71 x 31
H-grid is used and the same CFL number is employed. The
Mach numbers shown in Fig. 14 indicate the Mach numbers
at the throat region. For the M,=0.1 case, the Mach

—4 (" w/o Preconditioning

—10

L2 NORM OF DQ/Q

—-12

with Preconditioning

—14

—16 } | ]

10040 hR=lale 2000
ITERATION NO.

1
o] 500

FIG. 14. Convergence rates with and without preconditioning method
for inviscid flow in a strongly converging-diverging nozzle (AR = 10). For
all cases, CFL =4, k= [.
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number variation in the flowfield ranges from M =0.01 in
the upstream section to M = 0.08 at the nozzle exit, while for
the M, =10 case, it ranges from M =10.05 in the upstream
section to M = 1.6 at the exit.

The figure clearly shows that convergence is slow in all
cases, but that it improves (as opposed to slowing down) as
the throat Mach number is increased. This improvement is
obviously the result of increasing the inlet Mach number
from 0.01 to 0.05 and occurs even though the cigenvalues in
the throat region are becoming more and more stiff. For
example, convergence for a throat Mach number of 0.9 is
marginally better than that for 0.8, while convergence for
the choked condition (A,=1.0) is again modestly faster
than that for M, =0.9. There is clcarly no adverse effect of
eigenvalue stiffness at Mach one as the flow approaches and
passes through the sonic speed. Consequently, we conclude
that the predominant stiffness in the problem is the one
arising from low Mach numbers and that little would be
gained by using a generalized (as opposed to a low Mach
number) preconditioning for this transonic speed. The
reason for this discrepancy is apparently tied to the size of
the transonic region in this problem. The number of grid
points near the transonic region is small compared to the
total flowfield and so it does not have a significant impact
on overall convergence,

A similar conclusion concerning small regions of low
speed flow can be reached by considering high subsonic
(around M = 0.7) flow past an airfoil. The stagnation region
clearly is stiff in this case, but it is not large enough to cause
a slow down in convergence. Consequently, low Mach num-
ber preconditioning gives no advantage in such a problem.
A second observation concerning generalized precondi-
tioning for stiffness at M =1.0 is that it is not possibie to

L2 NORM OF DQ/Q

—16 1 1 1 1 1 b 1 ]
G 200 400 500 BCC 1000120014001600

ITERATION NO.
FIG. 15. Convergence rates with preconditioning method for flow in a

driven cavity for Re=1, 100, and 1000. For all cases, CFL=6, 0=3,
variable .
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_

Ra = 1 Re

100 Re = 1000

FIG. 16. Streamline contours for flow in a driven cavity for Re =1, 100. and 1000.

remove the stiffness completely because the eigenvalue is
required to pass through zero at M =10 [2]. Precondi-
tioning to remove stiffness at M = 1.0 can therefore only be
used to minimize the region where stiffness has an impact,
not to eliminate it. The complexities involved in obtaining a
generalized preconditioning method for multidimensional
flows, the impossibility of removing the stiffness at the sonic
point, and the lack of influence of the sonic region in
convergence in typical transonic flows are the reasons
we have chosen to concentrate on low Mach number pre-
conditioning.

Finally we note that low Mach number preconditioning
enhances convergence of all the unchoked and choked
nozzle flow cases in Fig. 14 and results in a convergence
speed that is independent of Mach number. Representative
results for one such preconditioned case are shown in
Fig. 14.

5.4. Flow in a Driven Cavity

The fourth test problem considers a flow in a square
cavity whose top wall moves with a uniform velocity. This

0.8 . Re
0.6 : present study
0 : numerical solution
0.4 by Ghia et al. (1982)
1000
Q.2
] 1 1 1 1 )
—-0.4 —-0.2 (o] 0.2 o.4 c.6 0.8 1

U VELOCITY

FIG. 17. Comparison of u velocity component at vertical centerline of
cavity with numerical solutions by Ghia et af. [25].

problem served as a benchmark for incompressible
Navier-Stokes equations for decades. Three Reynolds num-
ber cases 1, 100, and 1000 are considered and a 61 x 61 grid
is employed. A uniform grid is used for Re=1 and 100,
while a stretched grid is used for Re = 1000. Wall boundary
conditions are no slip, isothermal condition and zero nor-
mal pressure gradient. The Mach number of the moving lid
is 4.5 x 10~* Figure 15 shows convergence characteristics
for the above three Reynolds numbers. At Reynolds num-
bers of 1 and 100, the preconditioned system requires about
75 iterations for one order of convergence, while at
Re=1000, it requires 300 iterations. The slowdown in
convergence at Re = 1000 is mainily due to grid stretching.
Computational results showing streamlines for the above
three Reynolds number cases are shown in Fig. 16. The
streamline plots show a large primary vortex near the center
of the cavity, along with two secondary vortices at the bot-
tom corners. As the Reynolds number increases, a shift of
the center of the vortex toward the center of the cavity and
a growth of a secondary vortex at the right-hand bottom
corner can be noted. The effect of the Reynolds number on

a.6
—: present study
0.4
B: numerical solution
by Ghia et al. (1982)
0.2
5
S Oy
Y
==
—-0.2
Re = 1000
—0.4 |
—-0.8 ) 1 1 ] ]

o] 0.2 0.4

X

FIG. 18. Comparison of v velocity component at horizontal centerline
of cavity with numerical solutions by Ghia et al. [25].
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F1G. 19. Convergence rates with preconditioning method for viscous
flow in a thermally driven cavity for Ra = 10% 10°, and 10°. For all cases,
CFL =8. 6 =3, variable k.

the size of the secondary vortex at the left-hand bottom cor-
ner is relatively small. To verify the accuracy of numerical
solutions, comparison of « and v velocities at the vertical
and horizontal centerlines with numerical solutions by Ghia
er al. [257] is shown in Figs. 17 and 18, Excellent agreement
can be observed.

5.5. Flow in a Thermally Driven Cavity

The final test problem considers a buoyancy-driven flow
in a square enclosure. The configuration consists of two
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insulated horizontal walls and two vertical walls at
temperatures T, and 7. This problem again has been a
classical natural convection problem for decades, but most
studies are based on the incompressible formulation with
the Boussinesq approximation [26], which is appropriate
only for a small temperature difference between the vertical
walls. Practical applications such as furnace or nuclear
reactor design, however, require much larger temperature
differences so that compressible formulations without the
Boussinesq approximation must be employed. For this
reason, this problem is chosen as representative of a group
of low-speed flows that are compressible because of density
changes induced by surface heat transfer. It is known that
this problem exhibits complex flow features depending on
the Rayleigh number (Ra=p*gp{T,—T.)LC,/uk), the
aspect ratio, and a temperature difference parameter
(e=(T,— T){T,+ T.)). Here B is the thermai expansion
coefficient and L is the enclosure length. For the present
study, three Rayleigh number cases, Ra = 10°, 10°, and 10°
are considered with a temperature difference parameter
g =0.6. The aspect ratio of the present problem is one and
transport properties (¢ and k) are evaluated by using
Sutherland’s law. The Prandtl number based on reference
transport properties is 0.7. A 61 x 61 uniform grid is used for
Ra=10% and a 91 x 91 uniform grid is used for Ra=10°
and 10° Convergence rates with preconditioning for the
three cases are shown in Fig. 19. In all cases, convergence
behaviors are essentiaily the same and 300 steps are
required for one order of magnitude drop of AQ/Q.

Figure 20 shows streamline and temperature isolines for
Ra =103, 10°, and 10% It is well known that solutions with

“

Ra =10¢

Ra = 10°

Ra = 10°

FIG. 20. Streamline and isoline temperature contours for a viscous flow in a thermally driven cavity for Ra = 10°, [0% and 10%.
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FIG. 21. Comparison of Nusselt number with a correlation by
Chenoweth and Paolucci [18].

the Boussinesq approximation display a fully antisymmetric
flowfield with respect to the center of the enclosure and miss
the experimentally observed asymmetries. The present
results based on the full equations show a pronounced dif-
ference with increasing temperature differences and a flow-
field that is asymmetric as desired. At Ra = 107, a shift of the
center of the vortex towards the cold wall and downwards
to the lower wall of the enclosure 1s manifest. In all cases, the
basic form of the flowfield is a recirculating roll. This recir-
culation is driven by the generation of vorticity by the
horizontal temperature gradient {(67/9x). At Ra=10%
dT/dx is negative over the entire flowfield and a single
primary clockwise rotating roli is formed. At Ra = 10° and
10°, there are two secondary rolls embedded in the single
roll base flow. These secondary rolls are generated because
at high Ra numbers the intense development of the thermal
boundary layers in the vicinity of the wall leads to sign
reversal for the temperature gradient ¢7/9x. Also it can be
noted that as Ra increases, the secondary rolls intensify and
their centers move towards the side walls. The accuracy of
numerical solutions is verified by comparing the Nusselt
number at the left side wall with a correlation by
Chenoweth and Paolucci [18] in Fig. 21. Good agreement
can be observed for all three cases.

6. SUMMARY

Extension of a time-derivative preconditioning method to
viscous flows has been considered. A previously developed
preconditioning method fails in viscous flows because of
nonphysical time reversal for diffusive terms. In order to cir-
cumvent difficulty in the diffusion terms, the equations are
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first transformed to a “viscous” set of primary dependent
variables before the preconditioning matrix is developed.
With these primary dependent variables, the equations
degenerate to the classical diffusion equations in the limit of
highiy diffusive flows. The proper scaling of the time
derivatives is made to obtain well-conditioned eigenvalues
for efficient convergence in inviscid flows. The resulting
algorithm also provides a mechanism for keeping both the
von Neumann number and the CFL number of order one at
very viscous conditions, thereby ensuring rapid convergence
at low Reynolds numbers. Because the preconditioning
matrix operates only on the left-hand side of the discretized
equations and central differences (with unsplit flux vectors)
are used, the resulting solutions with preconditioning are
identical to those without. Roundoff error which has a
significant effect below Af = 1073 has also been addressed
and avoided by employing a gauge pressure. The quan-
titative effects of the new preconditioning method on the
convergence of a time-marching algorithm have been
investigated for several types of problems. Comparisons
with previous results have verified the accuracy of these
solutions. The convergence enhancement obtained with the
preconditioning matrix ranges from a factor of two to
several orders of magnitude. It is shown that low Mach
number preconditioning provides excellent convergence
even when the flowfield contains transonic regions whose
stiffness is not counteracted by the preconditioning.
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